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1. Introduction 

The design of RF coils in MRI has traditionally been based on the use of circuit concepts [1] and 
transmission line theories [1,2], which invoke quasistatic field approximations [3].  At relatively low 
frequencies (< 3 Tesla applications), quasistatic approximations are valid for head coils because the RF 
coil is small compared to the wavelength of the RF field.  At these operating frequencies, circuit concepts 
[3] can be applied to predict the resonance frequency and to determine the magnetic field by first 
assuming that the currents on the coil branches are uniform and then applying the Biot-Savart Law to 
determine the magnetic field produced by these currents.  
 

Although the circuit model is a zero-dimensional approximation for the three-dimensional 
electromagnetic resonance behavior in the coil, it can be very accurate for modeling relatively complex 
coil geometries.  At certain conditions however, these models start to fail because of two major 
limitations.  First, the circuit model approximation breaks down when the coil geometry is a significant 
fraction of the wavelength.  This limitation is not critical at 64 MHz, because the corresponding 
wavelength is 4.7 m.  Thus, even the diameter of a body coil (approximately 0.8 m) is less than 20% of a 
wavelength.  Even at high frequencies (200-300 MHz), analytical models [4,5] based on transmission line 
concepts and circuit models can still adequately describe the electromagnetic operation of empty head 
coils.  However, these models start to fail as we look into 7 Tesla empty body coils.  Second, as these 
analytical models start to breakdown with increasing frequency, they fail at a much faster rate with the 
presence of tissue.  Tissue distorts the ideal and easily modeled (from an analytical point of view) 
transverse electromagnetic (TEM) field structure, which typically exist in low field operation, leading to 
hybrid modes instead.  These hybrid modes are extremely challenging to model analytically. 

  

With the failure of quasistatic approximations as the operational frequency increases, a 
computational tool based on full wave electromagnetics becomes essential in conducting feasibility 
studies and in designing and evaluating the performance of high-field RF coils. 
 

2. Full Wave Electromagnetics in MRI: Background 
 Until the last decade, full-wave numerical methods have seldom been used to model the fields in 
RF coils for MRI systems.  Before that, there was not much need for such an approach because most of 
the systems were at magnetic field strengths of 1.5 Tesla and below.  In the last decade, however, there 
have been numerous applications of full-wave numerical methods to analyze a variety of RF coils.  For 
instance, Han and Wright utilized a 2D finite difference time domain (FDTD) method to model surface 
MRI coils loaded with phantoms [6].  The FDTD method has also been used to analyze a head sized TEM 
resonator [7] loaded either with a phantom [7-9] or with a human head model [10-15].  The finite 
elements method (FEM) has also been used to approximate the specific absorption rate (SAR) inside the 
human head in a saddle shaped MRI head coil at 64 MHz [16].  In 1996, Jin et al. employed the conjugate 
gradient method with the fast Fourier transform to study the birdcage coil.  Later, the FDTD method was 
also used to analyze the same problem [12,13,17-22].  In addition, simulations have made advancements 
to predict temperature distributions by thermal modeling [23-26].  Many of these full wave studies have 
shown excellent quantitative correlation with experimental data at 7 Tesla and 8 Tesla for surface [27,28] 
and volume head [8,29-31] coils.  With so many full wave approaches available, an important question 
remains: which of these methods is mostly suited for modeling loaded high-field MRI RF coils? 
 

3. The Finite Difference Time Domain Method 
There are three main numerical methods used in electromagnetics: the finite element method 

(FEM), the finite difference time domain (FDTD) method, and the integral equation method, also known 



as method of moments (MM).  Although MM and FEM can be implemented in the time domain, they are 
rarely used in this way; rather, they are usually associated with the frequency domain.  MM is 
fundamentally different from FEM and FDTD in that MM can be formulated in terms of unknown surface 
currents on perfect conductors and unknown volume currents in materials, whereas the unknowns in FEM 
and FDTD are the fields values everywhere within the volume of interest.  Because of this, MM has great 
advantages over FDTD and FEM when it is applied to geometries consisting of only perfect conductors, 
since the number of unknowns in MM is much less than the other two methods. 

 

For problems where large portions of the geometry are non-perfectly conducting, the number of 
unknowns for all three methods is comparable; however, the computation times vary greatly.  Both MM 
and FEM require the solution of matrix equation.  Since the number of unknowns required to model a coil 
is very large, iterative methods offer the only viable way to solve the matrix equation.  Assuming the 
number of unknowns in the problem is N, the computation time is proportional to Nθ, where θ is 2 for 
MM and 1.5 for FEM.  It should be noted that when there are large permittivity and conductivity contrasts 
in the geometry, which occurs when human tissue is present, the values for θ may be significantly larger 
than the nominal values given.  On the other hand, the FDTD method does not require a matrix solution, 
and its computation time is proportional to N4/3.  

 

There is also a wide disparity in memory requirements between the three methods. The memory 
needed to solve an MM problem with 50,000 unknowns can be used to solve an FEM problem with 
5,000,000 unknowns and an FDTD problem with 100,000,000 unknowns.  The one disadvantage of 
FDTD compared to FEM is that it is less flexible for modeling arbitrary geometries, because FEM can be 
applied to unstructured grids.  However, for the electrically large geometries that are encountered in high-
field MRI, one can argue that FDTD is more appropriate than FEM, because in many cases, the number 
of unknowns needed to solve the problem is relatively very large.  In addition, many tailored algorithms 
can be utilized to optimize the standard FDTD scheme.  In fact, many such algorithms have been 
successfully applied for MRI simulations [32].  The next section will address: “How to build RF coil 
simulator (in-house or using commercial software) using the FDTD method?”  
 

4. RF Coil Simulator Using the FDTD Method 
The explicit FDTD technique introduced by Kane [33] is used to provide a direct solution for 

Maxwell’s time-dependent curl equations.  The FDTD method is essentially based on replacing the spatial 
and the time domain derivatives of Maxwell’s equations with finite difference approximations.  An 
excellent source for the FDTD formulation can be obtained from [34].  To create an FDTD model for 
MRI RF coil simulations, we will need an anatomically detailed human model (for the coil load) as well 
as a coil grid.  In the following two sections, we will briefly discuss these tasks (a head coil simulation 
will be used as an example).   
 

4.1. The Anatomically Detailed Human Head Model 
With the availability of the visible human project anatomically detailed mesh 

(ftp://starview.brooks.af.mil/EMF/dosimetry models), is it necessary to develop new anatomically 
detailed models?  To achieve general behavioral characteristics of the coil, the answer is most likely no.  
On the other hand, for precise comparisons between experiments and simulations or to achieve robustness 
in a coil design, i.e. acceptable performance with different coil loads, the answer is definitely yes.   

 

An example of developing an anatomically detailed human head model is presented in [11].  The 
mesh data was obtained from 0.5mm x 0.5mm x 2mm 1.5 Tesla MRI images.  The model was constructed 
by assigning tissue types in each image and then encoded these types on a digital image.  Figure 1 
describes the girding process [11,12].  Several error-correction and validation procedures were performed.  
First, the digitally encoded tissue types were processed to remove voids in the data caused by human error 
in tissue delineation.  Erroneous voids were distinguished from true voids (air spaces in the mouth and 
nasal passages) and were filled by assigning an adjacent tissue type.  Automated image processing 
software was developed to accomplish this task.  Next, differences from layer to layer (image to image) in 



the data set were reconciled by re-slicing the data along a different axis and re-examining the imagery to 
identify discontinuities in tissue boundaries.  Some interpolation of the data was also required because of 
the difference in sample spacing within an image and between images.  Finally, the image data were 
output as a single volumetric data set that specifies tissue types at each sample position.  The tissue type 
information stored at each voxel is used with a look-up-table that provides dielectric constant and 
conductivity values for any frequency of interest.  
 

 
 

4.2. Model of the Coil Structure: How to Grid? 
As we have created/used available anatomically detailed human models (the load), we will 

examine the needed steps for setting up the grid of the coil and the load followed by designing the FDTD 
source code (in case you are generating your own).  In particular, we will look at examples using the 
birdcage [1] and the TEM [7] resonators. 

 

4.2.1. The Birdcage Coil 
In order to obtain accurate electromagnetic analysis of the birdcage coil operation with the FDTD 

algorithm, an octagonal geometry can be utilized in which the lumped capacitive elements are properly 
modeled.  Figure 2 shows the FDTD coil grid, where eight-fold symmetry is maintained, and the human 
head.  The different shaded points on the grid correspond to different algorithms utilized to describe the 
desired geometry.  For instance, a lumped element FDTD algorithm is used to model the tuning capacitors 
[35].  This algorithm requires that the capacitive lumped elements be positioned along the Cartesian axes, 
namely x or y.  Thus, in order to maintain symmetry, the orientation of the capacitors along the eight 
slanted edges of the rings may change.  Another example is an FDTD algorithm which was utilized to 
model the curvatures [13] of the rings and strips, which removes stair-stepping errors from these critical 
coil components.  To simulate quadrature excitation, the same excitation can be applied to two different 
drive points, as is done in experiment.  The only difference between the two ports is a 90o relative phase 
shift on the input excitations.  A differentiated Gaussian pulse can be used to excite the system [20-22]. 

 

                                 
 

The electrical performance of the coil can be accurately predicted since the modeled geometry 
does not deviate greatly from the coil’s actual shape.  Figure 3 clearly demonstrates this point, in which 
an FDTD calculated frequency spectrum [30,36] of a 3 Tesla high pass birdcage coil that is numerically 
loaded with the visible human project head/shoulder anatomical mesh  [37] is shown.  The numerical 
values of the capacitors used along the end rings were set to the values of the actual lumped capacitors 

 
 

Figure 1:  The creation of the 
anatomically detailed human head 
model; left is the 1.5 Tesla image, 
center is the manually digitized 
grid, and right is the FDTD grid. 

Figure 2:  FDTD grid of the top circular 
ring of the birdcage coil.  The different 
shadings on the grid correspond to 
different non-standard FDTD algorithms 
used to achieve an accurate representation 
of the physical performance of the coil.  
These include lumped capacitors and 
slanted non-cubical cells used to account 
for the curvature of the ring as well as the 
struts. 



used in the GE birdcage coil in clinical operation (15.5pF for 3 Tesla).  First, the spectrum shows 9 modes 
corresponding to the 16 struts in the coil.  Second, the resonance frequency of the “homogenous mode” of 
operation differs by less than 7.5 % from what is actually obtained in the real coil (128 MHz). 
 

        
                

 

4.2.2. The TEM Resonator 
Analytical models based on multi-conductor transmission line theory [4,5] have accurately 

described the operation of empty TEM coils.  They have shown that for an empty N-strut TEM coil, 
N/2+1 TEM modes exist.  The second mode on the spectrum, mode 1, produces a linearly polarized field 
that can be utilized for imaging.  The other modes produce nulls in the center of the coil, rendering them 
ineffective for conventional imaging.  
 

Similar to the birdcage coil, the TEM resonator and the object to be imaged (phantoms or human 
head/body models) can be modeled as a single system with the FDTD method [8,10-13,15,38].  Figure 4 
displays the FDTD grids of 16/32-strut TEM resonators loaded with the human head/body models.  A 
stair-step approximation can be used to model the shield and the top and bottom rings of the coil.  The 
coaxial rods can be modeled with a modified FDTD algorithm  [13] that accounts for the curvatures of the 
rods to minimize errors caused by stair-stepping.  To achieve rigorous modeling of the excitation port(s), 
the coil must be numerically tuned by adjusting the gap between the TEM stubs until any mode of interest 
is resonant at the desired frequency of operation.  For a loaded coil, this process must be performed while 
the load is simultaneously present within the coil structure.  Figure 8-5 presents the tuning process of the 
model by displaying a FDTD calculated frequency spectrum of a 16-strut TEM resonator (loaded with an 18.5-
cm diameter spherical phantom filled with 0.125 M NaCl) and a corresponding experimentally measured S11 
spectrum for the same coil dimensions and load.  

 

 

 
 

Figure 4: 3D FDTD models of 
anatomically detailed human 
head/body models loaded 
within the TEM resonators. 

 

Figure 3:  FDTD calculated frequency 
response of high-pass birdcage coil 
loaded with the head model.  The 
capacitance value used was 15.5 pF 
(currently utilized for 3T operation).  
The spectrum shows 9 modes 
representing the 16-struts of the coil.  
The circle represents the linear mode 
of operation; its frequency is within 
7.5 % of the experiment value. 



 
 
4.2.3. Grid Size and Absorbing Boundary Conditions 

The resolution and therefore the size of problem is dependant on the needs of the modeler.  A rule 
of thumb is the resolution must not be less than (l/20), where l is the shortest wavelength in the problem.  
If the modeler is only interested in the general overall behavior of the coil without rigorously modeling 
the drive ports, feeding coaxial lines, and/or the tuning elements, the need for high resolution coil grids is 
not justified.  On the other hand, if the modeler is interested in the coil’s frequency response, input 
impedance, and localized SAR and B1 effects, the aforementioned elements must be rigorously modeled 
and a high resolution is needed.  For instance, 25,000,000/8,000,000 cells were used to generate the 
complete grid of the birdcage/TEM head coils. 

    

The perfectly matched layer (PML) absorbing boundary condition [39] currently is considered to 
be the optimal method to absorb RF radiation from the coil.  Typically, 16 layers (cells) on each side of 
the coil with about 10 cells separation between the PML surface and closest point on the coil 
geometry/load are needed. 
 

4.3. Effects of Rigorous Source Modeling on the Electric Field  
By exciting the coil in one location or multiple locations and allowing the coil currents to be 

properly calculated with Maxwell’s equations, one can properly account for the coupling between the 
drive port and the object to be imaged.  At high frequency, it is expected that this coupling will have a 
significant effect on the electric fields and therefore SAR values, particularly near the source.  Figure 7 
displays infrared-measured and FDTD-calculated square of transverse electric field distribution of an 
axial slice inside the spherically loaded 16-strut TEM resonator [40].  The resonator was experimentally 
and numerically excited at one port and tuned to 340 MHz.  Excellent agreement is obtained between the 
FDTD and infrared results.  It is also observed that one can clearly identify the location of the excitation 
source, which underscores the importance of modeling the source rigorously.  

 
      

                                     
   

 

Figure 5: Measured and 
FDTD calculated response of 
a loaded (18.5-cm diameter 
spherical phantom filled with 
0.125 M NaCl) 16-strut TEM 
resonator where the mode of 
operation is tuned to approx. 
330 MHz. 

 

Figure 7:  Infrared images and 
FDTD calculated transverse E-
Field2 distribution of an axial 
slice inside a loaded (18.5-cm 
diameter spherical phantom filled 
with 0.125 M NaCl) 16-strut TEM 
resonator.  The resonator was 
tuned to 340 MHz and excited at 
one port. 



4.4. Effects of Rigorous Source Modeling on the Magnetic Field  
Effects of source modeling are not exclusively seen in electric field distributions, but also in 

magnetic fields distributions.  Figure 8 shows axial measured transmit (B1
+) and receive (B1

-) fields, as 
well as low and high (154o near the center of the phantom) flip angle images obtained at 8T, and the 
corresponding simulated results obtained at 340 MHz using the FDTD model, corresponding to mode 0 
(first mode on the spectrum) [8].  The coil is a 16-strut TEM resonator, and the load utilized in the 
experiments and the numerical model is an 18.5-cm diameter sphere filled with 0.125 M NaCl.  The solid 
white circle corresponds to the position of the excitation source [8].  It can be clearly seen that there is 
strong coupling (high signal intensity in the load near the source) between the excitation port and the 
phantom.  This physical effect can clearly be accurately produced in simulation through rigorous 
modeling of the excitation port [8].  

 

 
 

4.5. The FDTD Code 
A general FDTD code for MRI RF coil simulations would start by dynamically allocating the 

memory requirements for all the arrays including electric field vectors, magnetic field vectors, 
permittivity, conductivity, and capacitance.  With different coil geometries, cell sizes, and coil loading 
(empty, phantoms, or human head models), dynamic allocations provide convenience and conservation of 
memory.  The next step is assigning the proper electrical properties to specific portions of the grid, 
including the phantom or the biological tissues of the human head model.  The time loop then starts with 
no coil excitations implemented, so the initial field values are set to be zero.  The time is then 
incremented by one time step, and the excitation is “turned on” at a specified excitation location.  Note 
that the shape of the excitation is not important, as long as its frequency spectrum contains the frequencies 
of interest.  The electric field values are then updated everywhere in the grid.  A lumped element FDTD 
algorithm is used to model the tuning capacitors at their corresponding positions on the coil.  Also, the 
electric field components which are tangent to a perfectly conducting surface (coil structure) are forced to 
zero.  To avoid stair stepping errors, algorithms are used to model slanted perfect conductors.  Using the 
calculated electric field values, the magnetic field values are then updated throughout the entire grid.  This 
denotes the end of the time step.  The time step procedure is then repeated until the simulation has run a 
prescribed number of time steps.  Because the updated field values are only functions of the previous field 
values, memory is conserved.  At any cell, memory conservation is accomplished by overwriting the 
updated field value into the same memory location which contains the previous value at the same cell.  
  

In actuality, the goal is to obtain the electromagnetic field distribution within the coil at a specific 
frequency of interest (the appropriate Lamor frequency), after the coil’s mode of operation has been tuned 
to this frequency by adjusting the value of the lumped capacitors (birdcage coil) or the gap between inner 
struts (TEM coil).  From the magnetic field distribution, one can extract the B1 field distribution, and from 
the electric field distribution, one can determine the SAR as well as the total power absorbed by the 
phantom or the human head.  Obtaining these field distributions is a two step process.  In the first step, an 

Figure 8: Measured and FDTD 
calculated transmit and receive 
fields and low and high flip 
angle images at 8 Tesla, 
through an axial slice of a 
head-sized spherical phantom 
filled with 0.125 M NaCl 
loaded in a TEM resonator [8].  
The solid white circles 
represent the location of the 
drive port. 



initial guess is made for the capacitor values (birdcage coil) or the gap between the inner struts (TEM 
coil).  The coil is then excited and an FFT (Fast Fourier Transform) implementation is then applied to the 
FDTD solution at a few points within the grid to obtain a representation of the frequency response of the 
coil.  The location of the points where the data is collected is not important, since the frequency 
components corresponding to different points within the coil should not differ significantly (the only 
difference should be variations in the magnitudes).  If the resonance frequency of the coil’s operational 
mode is not at the desired frequency, the capacitor values are changed or the gaps are adjusted, and the 
FDTD program is rerun.  This step is repeated until the mode of interest resonates at the desired 
frequency.  In the second step, the FDTD solution is run with the correct capacitor values or gap sizes, but 
instead of applying an FFT at a few points in the grid, a DFT (discrete Fourier transform) is applied on-
the-fly at all points of interest within the grid at the resonant frequency.  Thus, the time domain data does 
not need to be stored, and the coil’s field distribution is known at the appropriate resonant frequency. 
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